## 10-1 The Three Dimensional Coordinate System



Distance formula in space:

Midpoint formula in space:

$$\mathcal{M} = \left(\frac{X_1 + X_2}{2}, \frac{Y_1 + Y_2}{2}, \frac{Z_1 + Z_2}{2}\right)$$

Equation of a sphere:

$$(x-4)^{2}+(y-k)^{2}+(z-j)^{2}=r^{2}$$

10-1 Notes.notebook

Ex 1 Plot each point:



Ex 2 Find the distance between (-1, 4, 1) and (2, 5, -6).

$$D = \sqrt{(2-1)^2 + (5-4)^2 + (6-1)^2}$$

$$\partial = \sqrt{3^2 + 1^2 + -7^2}$$

$$\partial = \sqrt{9+1-49}$$

$$\partial = \sqrt{59} \approx 7.7$$

Ex 3 Find the distance between (7, 4, 8) and (3, 2, -5).

$$0 = \sqrt{(3-7)^2 + (2-4)^2 + (-5-8)^2}$$

$$0 = \sqrt{16+4+169}$$

$$0 = \sqrt{189} \approx 13.7$$

Ex 4 Find the standard equation of the sphere with center (1, 5, -2) and radius 4.

$$(x-1)^{2} + (y-5)^{2} + (z+2)^{2} = 16$$

Ex 5 Find the standard equation of the sphere with center (-5, 8, 0) and radius 7.

$$(x+5)^{2} + (y-8)^{2} + 2^{2} = 49$$

Ex 6 Find the center and radius of the sphere given by

$$x^{2} + y^{2} + z^{2} + 4x - 2y + 8z + 10 = 0$$

$$(x^{2} + 21x + 4) + (y^{2} - 2y + 1) + (z^{2} + 8z + 16)^{2} - 10$$

$$(x + 2)^{2} + (y - 1)^{2} + (z + 4)^{2} = 11$$

$$C: (-2, 1, -4)$$

$$\Gamma: \sqrt{1}$$

Ex 7 Find the center and radius of the sphere given by

$$x^2 + y^2 + z^2 - 4x + 2y - 6z + 10 = 0$$

$$(x-2)^{2}+(y+1)^{2}+(z-3)^{2}=4$$
 $C(a,-1,3)$ 
 $C(a,-1,3)$ 

## **Practice**

Find the equation of the sphere that has the points (3, -2, 6) and (-1, 4, 2) as endpoints of a diameter.